
Fundamental CUDA

Optimization

NVIDIA Corporation

Outline

Fermi Architecture

Kernel optimizations

Launch configuration

Global memory throughput

Shared memory access

Instruction throughput / control flow

Optimization of CPU -GPU interaction

Maximizing PCIe throughput

Overlapping kernel execution with memory copies

Most concepts in this

presentation apply to

any language or API

on NVIDIA GPUs

512 Scalar Processor (SP) cores execute parallel

thread instructions

16 Streaming Multiprocessors (SMs)

 each contains

32 scalar processors

32 fp32 / int32 ops / clock,

16 fp64 ops / clock

4 Special Function Units (SFUs)

Shared register file (128KB)

48 KB / 16 KB Shared memory

16KB / 48 KB L1 data cache

20-Series Architecture (Fermi)

Kepler cc 3.5 SM (GK110)

òSMXó (enhanced SM)

192 SP units (òcoresó)

64 DP units

LD/ST units

4 warp schedulers

Each warp scheduler is dual -

issue capable

K20: 13 SMXõs, 5GB

K20X: 14 SMXõs, 6GB

K40: 15 SMXõs, 12GB

Software Hardware

Threads are executed by scalar processors

Thread

Scalar

Processor

Thread

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one

multiprocessor - limited by multiprocessor

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Execution Model

Thread

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of

32-thread warps

A warp is executed

physically in parallel

(SIMD) on a multiprocessor

=

Warps

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Constant and Texture

Caches

L1 / L2 Cache

Memory Architecture

© NVIDIA Corporation 2011

Launch Configuration

Launch Configuration

Key to understanding:

Instructions are issued in order

A thread stalls when one of the operands isnõt ready:

Memory read by itself doesnõt stall execution

Latency is hidden by switching threads

GMEM latency: 400-800 cycles

Arithmetic latency: 18-22 cycles

How many threads/ threadblocks to launch?

Conclusion:

Need enough threads to hide latency

GPU Latency Hiding

In CUDA C source code:

int idx = threadIdx.x+blockDim.x *blockIdx.x ;

c[idx] = a[idx] * b[idx];

In machine code:

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

I0

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

I1 I0
I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

I1 I0
I1 I0

I1 I0
I1 I0

I1 I0

I1 I0
I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0
I1 I0

I1 I0
I1 I0

I1 I0

I1 I0
I1 I0

I1 I0

I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 é

I1 I0

I1 I0
I1 I0

I1 I0

I1 I0
I1 I0

I1 I0

I1 I0 I2
I1 I0

GPU Latency Hiding ð inside the SM

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps

 W0:

 W1:

 W2:

 W3:

 W4:

 W5:

 W6:

 W7:

 W8:

 W9:

é

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19

I1 I0

I1 I0
I1 I0

I1 I0

I1 I0
I1 I0

I1 I0

I1 I0 I2

I2 I1 I0

Launch Configuration

Hiding arithmetic latency:

Need ~18 warps (576 threads) per SM

Or, latency can also be hidden with independent instructions from the

same warp

For example, if instruction never depends on the output of preceding

instruction, then only 9 warps are needed, etc.

Maximizing global memory throughput:

Depends on the access pattern, and word size

Need enough memory transactions in flight to saturate the bus

Independent loads and stores from the same thread

Loads and stores from different threads

Larger word sizes can also help (float2 is twice the transactions of float, for

example)

Maximizing Memory Throughput

Increment of an array of 64M elements
Two accesses per thread (load then store)

The two accesses are dependent, so really 1 access per thread at a time

Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

Launch Configuration: Summary

Need enough total threads to keep GPU busy

Typically, youõd like 512+ threads per SM

More if processing one fp32 element per thread

Of course, exceptions exist

Threadblock configuration

Threads per block should be a multiple of warp size (32)

SM can concurrently execute up to 8 thread blocks

Really small thread blocks prevent achieving good occupancy

Really large thread blocks are less flexible

I generally use 128-256 threads/block , but use whatever is best for the application

For more details:

Vasily Volkovõs GTC2010 talk òBetter Performance at Lower Occupancyó

(http://www.gputechconf.com/page/gtc -on-demand.html#session2238)

Global Memory

Throughput

Memory Hierarchy Review

Local storage

Each thread has own local storage

Mostly registers (managed by the compiler)

Shared memory / L1

Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1

Shared memory is accessible by the threads in the same threadblock

Very low latency

Very high throughput: 1+ TB/s aggregate

L2

All accesses to global memory go through L2, including copies to/from CPU host

Global memory

Accessible by all threads as well as host (CPU)

High latency (400-800 cycles)

Throughput: up to 177 GB/s

Memory Hierarchy Review

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

